

Anomaly And Intrusion Detection Algorithms for CAN-bus Networking Security in Automotive Applications

Automotive SPIN Italia 21° WORKSHOP on AUTOMOTIVE SOFTWARE & SYSTEMS – 30/05/2023

P. Dini¹, S. Saponara¹, C. Rosadini², W. Nesci², and S. Chiarelli²

¹ Department of Information Engineering – University of Pisa ² Marelli Europe S.p.A

- Background
- Detection Engines
 - Rule-Based
 - Fingerprinting Voltage-based
 - Fingerprinting Time-based
- Combining Detection Engines
- Characterization Setup

UNECE WP.29 – R155

R155 - Cybersecurity

- Establish a Cybersecurity Management System (CSMS), which ensures security is adequately considered during development, production and post-production phases
- Manage vehicle cyber risks
- Securing vehicles by design to mitigate risks along the value chain
- Detecting and responding to security incidents across vehicle fleet

- 7.3.7. The vehicle manufacturer shall implement measures for the vehicle type to:
 - (a) Detect and prevent cyber-attacks against vehicles of the vehicle type;
 - (b) Support the monitoring capability of the vehicle manufacturer with regards to detecting threats, vulnerabilities and cyber-attacks relevant to the vehicle type;
 - (c) Provide data forensic capability to enable analysis of attempted or successful cyber-attacks.

Can be achieved by a combination of

- onboard solutions to detect in-vehicle attacks
- offboard systems for fleet-wide collection and analysis

Rule-Based Approach

Rule-Based: detection capability (R155 coverage)

IDS Rule-Based

4.3.2 Threats to vehicles regarding their communication channels			Attack performed by						
			Added ECU		Replaced ECU		Reprogrammed ECU		
High level and sub-level descriptions of vulnerability/ threat	gh level and sub-level descriptions of vulnerability/ threat Example of vulnerability or attack method		w/o dbc mod	w/ dbc mod*	w/o dbc mod	w/ dbc mod*	w/o dbc mod		
Spoofing of messages or data received by the	Spoofing of messages by impersonation (e.g. 802.11p V2X during platooning, GNSS messages, etc.)	IDS		IDS		IDS			
vehicle	Sybil attack (in order to spoof other vehicles as if there are many vehicles on the road)	IDS		IDS		IDS			
	Communications channels permit code injection, for example tampered software binary might be injected into the communication stream								
Communication channels used to conduct	Communications channels permit manipulate of vehicle held data/code								
unauthorized manipulation, deletion or other amendments to vehicle held code/data	Communications channels permit overwrite of vehicle held data/code								
	Communications channels permit erasure of vehicle held data/code								
	Communications channels permit introduction of data/code to the vehicle (write data code)								
Communication channels permit	Accepting information from an unreliable or untrusted source	IDS		IDS		IDS			
untrusted/unreliable messages to be accepted or are vulnerable to session hijacking/replay attacks	Man in the middle attack/ session hijacking	IDS		IDS		IDS			
	Replay attack, for example an attack against a communication gateway allows the attacker to downgrade software of an ECU or firmware of the gateway	IDS		IDS		IDS			
Information can be readily disclosed. For	Interception of information / interfering radiations / monitoring communications								
example, through eavesdropping on communications or through allowing unauthorized access to sensitive files or folders	Gaining unauthorized access to files or data	IDS	IDS	IDS	IDS	IDS	IDS		
Denial of service attacks via communication channels to disrupt vehicle functions	Sending a large number of garbage data to vehicle information system, so that it is unable to provide services in the normal manner	IDS		IDS		IDS	IDS		
	Black hole attack, in order to disrupt communication between vehicles the attacker is able to block messages between the vehicles	IDS							
An unprivileged user is able to gain privileged access to vehicle systems	An unprivileged user is able to gain privileged access, for example root access	IDS	IDS	IDS	IDS	IDS	IDS		
Viruses embedded in communication media are able to infect vehicle systems	Virus embedded in communication media infects vehicle systems								
	Malicious internal (e.g. CAN) messages	IDS		IDS		IDS			
Messages received by the vehicle (for example	Malicious V2X messages, e.g. infrastructure to vehicle or vehicle-vehicle messages (e.g. CAM, DENM)	N/A	N/A	N/A	N/A	N/A	N/A		
X2V or diagnostic messages), or transmitted	Malicious diagnostic messages	IDS	IDS	IDS	IDS	IDS	IDS		
within it, contain malicious content	Malicious proprietary messages (e.g. those normally sent from OEM or component/system/function supplier)	IDS		IDS		IDS			

Unicity of CAN ECUs/Devices – Voltage Levels

Basic Concept from Simplified Model of a CAN Transceiver

- Different ECUs have tiny differences in the voltage of electrical signals which depends on the hardware and production process, even though the ECU are the same model
- The unique signatures of electrical signals could be used as fingerprints for detecting intrusions as well as identifying the source ECU of the attack

Voltage Fingerprinting Approach

Monitoring the Physical Layer of CAN_H & CAN_L

Opportune Sampling Phase on dedicated ECU/device

Check of Features by Specialized Algorithm

"Method For Protection From Cyber Attacks To A Vehicle, And Corresponding Device."
U.S. Patent Applications No. <u>17/664,960</u> and No. <u>17/804,010</u>.

Unicity of CAN ECUs/Devices – Internal Clock

- ECU-A and ECU-B time references start at different absolute instants.
- ECU-A time runs slower than absolute time.
- ECU-B time runs faster than absolute time.

- All μ C need a square wave (clock) to sequence their operations.
- The square wave is produced by an oscillator external to the μ C.
- Typical oscillator: quartz with frequency ~10MHz.
- Internal clock multiplier that rise up to frequency to ~100MHz
- The µC uses the internal clock to define "time-line".
- Technical Fact (HW/SW):
 - each ECU has its own key-on-time
 - every ECU has its own ref. time

Timing Fingerprinting Approach

* "Method For Protection From Cyber Attacks To A Vehicle Based Upon Time Analysis, And Corresponding Device." U.S. Patent Application No. 17/929,370.

Rule-Based + Fingerprinting: detection capability (R155 coverage)

IDS Rule-Based FP Time-based

FP Voltage-Based

4.3.2 Threats to vehicles regarding their communication channels			Attack performed by						
			Added ECU		Replaced ECU		Reprogrammed ECU		
High level and sub-level descriptions of vulnerability/ threat	Example of vulnerability or attack method		w/o dbc mod	w/ dbc mod*	w/o dbc mod	w/ dbc mod*	w/o dbc mod		
Spoofing of messages or data received by the	Spoofing of messages by impersonation (e.g. 802.11p V2X during platooning, GNSS messages, etc.)	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP		
vehicle	Sybil attack (in order to spoof other vehicles as if there are many vehicles on the road)	FP	FP	FP	FP	FP	FP		
	Communications channels permit code injection, for example tampered software binary might be injected into the communication stream			FP	FP	FP	FP		
Communication channels used to conduct	Communications channels permit manipulate of vehicle held data/code			FP	FP	FP	FP		
amendments to vehicle held code/data	Communications channels permit overwrite of vehicle held data/code			FP	FP	FP	FP		
	Communications channels permit erasure of vehicle held data/code			FP	FP	FP	FP		
	Communications channels permit introduction of data/code to the vehicle (write data code)			FP	FP	FP	FP		
Communication channels permit untrusted/unreliable messages to be accepted or are vulnerable to session hijacking/replay attacks	Accepting information from an unreliable or untrusted source	FP	FP	FP	FP	FP	FP		
	Man in the middle attack/ session hijacking	FP	FP -	FP -	FP	FP	FP		
	Replay attack, for example an attack against a communication gateway allows the attacker to downgrade software of an ECU or firmware of the gateway	IDS FP	FP	FP FP	FP FP	FP FP	FP FP		
Information can be readily disclosed. For	Interception of information / interfering radiations / monitoring communications								
example, through eavesdropping on communications or through allowing unauthorized access to sensitive files or folders	Gaining unauthorized access to files or data	IDS	IDS	FP	IDS FP	IDS FP	IDS FP		
Denial of service attacks via communication	Sending a large number of garbage data to vehicle information system, so that it is unable to provide services in the normal manner	IDS FP FP	FP FP		FP FP	IDS FP FP	IDS FP		
channels to disrupt vehicle functions	Black hole attack, in order to disrupt communication between vehicles the attacker is able to block messages between the vehicles	IDS							
An unprivileged user is able to gain privileged access to vehicle systems	An unprivileged user is able to gain privileged access, for example root access	IDS	IDS	FP	FP				
Viruses embedded in communication media are able to infect vehicle systems	Virus embedded in communication media infects vehicle systems								
	Malicious internal (e.g. CAN) messages	FP	FP	FP	FP	FP	FP		
Messages received by the vehicle (for example	Malicious V2X messages, e.g. infrastructure to vehicle or vehicle-vehicle messages (e.g. CAM, DENM)	N/A	N/A	N/A	N/A	N/A	N/A		
X2V or diagnostic messages), or transmitted	Malicious diagnostic messages	IDS	IDS	FP	FP	FP	FP		
within it, contain malicious content	Malicious proprietary messages (e.g. those normally sent from OEM or component/system/function supplier)	IDS FP	FP	IDS FP	FP	IDS FP	FP		

Needs for Approaches Merging

Rule-based

Multifeatured IDS

Validation Setup – Real Data Collection

Adversary fabricates and injects messages with forged ID, DLC, and data.

Adversary is able to manipulate an ECU, exploiting another compromised.

Adversary is able to stop/suspend ECU and its data traffic.

- <u>Weak Attacker</u>: the attacker is assumed to be able to stop/suspend the ECU from transmitting certain messages or listen only mode. <u>Cannot inject any fabricated messages</u>.
- <u>Strong Attacker</u>: the attacker is assumed to have full control of it and access to memory data. In addiction to what a weak attacker can do, this attacker controlling a fully compromised ECU can mount attacks by injecting arbitrary attack message.

Validation Setup – Analysis & Testing

😑 Console 🕱 🧔 Tasks 🐰 Peripheral Registers Values 🎇 Problems 🜔 Exe								
<terminated> can pal s32k144 new debug flash pemicro [GDB PEMicro Interface]</terminated>								
P&E Semihosting Console								
Fac Seminoscing console								
media clock Status ID 0x120 0.845391								
media clock Status ID 0x1FC 0.693206								
media clock Status ID 0x1EF 0.845407								
media clock Status ID 0x2EF 0.842347								
**** ininia analini ou LTNE ****								
TD 0x120 analisi UN-LINE tota								
ID 0x120> fuori intervallo di confidenza> 0.134432								
TD exize> fuori intervallo di confidenza> 0.134432								
ID 0x1EF> fuori intervallo di confidenza> 0.536141								
ID 0x1EC> fuori intervallo di confidenza> 0.693263								
TD 0x1FE> fuori intervallo di confidenza> 0.226902								
ID 0x1EF> fuori intervallo di confidenza> 0.226902								
ID 0x1FC> fuori intervallo di confidenza> 0.772793								
ID 0x1EF> fuori intervallo di confidenza> 0.072190								
ID 0x1EF> fuori intervallo di confidenza> 0.072190								
ID 0x1EF> fuori intervallo di confidenza> 0.536141								
ID 0x1EF> fuori intervallo di confidenza> 0.536141								
ID 0x120> fuori intervallo di confidenza> 0.359808								
ID 0x1EF> fuori intervallo di confidenza> 0.226902								
ID 0x1EF> fuori intervallo di confidenza> 0.226902								
ID 0x120> fuori intervallo di confidenza> 0.359808								
ID 0x120> fuori intervallo di confidenza> 0.536156								
ID 0x1EF> fuori intervallo di confidenza> 0.763058								
ID 0x1EF> tuori intervallo di confidenza> 0.763058								
ID 0x120> tuori intervallo di confidenza> 0.536156								
ID 0x120> tuori intervallo di contidenza> 0.536156								

- easy for tuning phase
- on-line test
- representative configuration

• Test/Comparison for different Embedded Systems

(infineon

Validation Setup – Test Bench Improvement

Test directly on real demonstrator

- Use of Prototyping Tools (Arduino EVB, SD cards, Plug-in Shields)
- Increased flexibility in validation of algorithms
- Increase in measurable physical layers
- Acceptable operational limitations (respect of high-rate periodicity)

Validation of Rule-Based + Time-Based

Replay Attack

Every time a message with an ID belongs to *Unit A* is sent, the Strong Attacker replies on the bus with a message with the same ID sent by Unit A but different data frame

24.

N. of times **score** \ge 90%

Impersonation Attack

Unit A is under attack of Weak Attacker. It stops sending message. any Strong Attacker sends Unit ID messages Α to the unit impersonate weakly compromised.

Thormal Tost

0

Injection Attack

Strong Attacker uses just high frequency messages with ID=0x00 in order to occupy the bus wining all arbitration phase. The other units can not communicate between them.

0

	<u>Inermal lest</u>							
	The test was carried out between 25°C ÷ 83°C.							
	Every 5°C increment, 4 messages are sent on the bus							
Temp*C 24.4	Unit C is the sender							
Thermal Test	Classified as A	Classified as B	Classified as C	Classified as Unk				
Mean score	0.4%	0.01%	99.3%	0.3%				
<i>Std Dev</i> score	0.1%	0.01%	0.3%	0.2%				
N. of times score \ge 67%	0	0	48	0				

0

48

Thanks for your Attention!