

A REFINED RISK ASSESSMENT FRAMEWORK FOR AUTOMOTIVE

23/05/2024

Francesco Merola Università di Pisa – ISTI/CNR

Introduction

Connected and autonomous vehicles:

- Use of Artifical Intelligence (AI) based autonomous functionalities
- Increased connectivity beyond vehicle boundaries
- Significant increase in risks related to cyber-security
- Risk assessment is a pivotal and increasingly complex activity

Introduction

Fuzzy logic based risk assessment

- In line with the ISO/SAE 21434
- Provides output on a continuous scale, favouring risk prioritization and classification
- Explicitly models incomplete or imprecise input data
- Preserves the explainability of the process

• Introduction

• Fuzzy Logic Basics

- Risk Assessment Framework
- Application Example
- Conclusions

What is fuzzy logic

• Fuzzy logic is a way to model logical reasoning where the truth of a statement is not binary

Fuzzy Inference System

- Introduction
- Fuzzy Logic Basics
- Risk Assessment Framework
- Application Example
- Conclusions

Framework Overview

- Takes place during TARA, after damage and threat scenarios have been identified
- The input variables that determine the risk are *Feasibility Rating* and *Impact Rating*

Membership functions

Membership functions are used to map the input space to a degree of truth between 0 and 1 for a set of human interpretable labels

Feasibility Rating

Calculated with CVSS \rightarrow input range [0.12, 3.89]

Discrete Mapping

Classic reasoning

Membership functions Fuzzy reasoning

Input Interval	Label	
2.96 – 3.89	High	
2.00 – 2.95	Medium	
1.06 – 1.99	Low	
0.12 - 1.05	Very Low	

Rule base

Feasibility rating Very Low Medium Low High 2 3 4 5 Severe Major 2 1 3 4 Impact rating Moderate 1 2 2 3 Negligible 1 1 1 1

Risk Matrix

Rule Base

		Feasibility rating			
		Very Low	Low	Medium	High
	Severe	Low	Medium	High	Very High
Impact	Major	Very Low	Low	Medium	High
rating	Moderate	Very Low	Low	Low	Medium
	Negligible	Very Low	Very Low	Very Low	Very Low

IF Impact Rating is Severe AND Feasibility Rating is Very Low THEN Risk is Low

IF Impact Rating is Severe AND Feasibility Rating is Very Low THEN Risk is Medium

MATLAB Fuzzy Logic Designer

Membership functions

Rule base

Syster	n: RiskAssessmentProposal			
Add A	II Possible Rules) (Clear All Rules)			
	Rule	Weight	Name	
1	If Feasibility Rating is Very Low and Impact Rating is Negligible then Risk is Very Low	1	rule1	
2	If Feasibility Rating is Low and Impact Rating is Negligible then Risk is Very Low	1	rule2	
3	If Feasibility Rating is Medium and Impact Rating is Negligible then Risk is Very Low			
4	If Feasibility Rating is Very Low and Impact Rating is Moderate then Risk is Very Low			
5	If Feasibility Rating is Low and Impact Rating is Moderate then Risk is Low	1	rule5	
6	If Feasibility Rating is Medium and Impact Rating is Moderate then Risk is Low	1	rule6	
7	If Feasibility Rating is Very Low and Impact Rating is Major then Risk is Very Low	1	rule7	
8	If Feasibility Rating is Low and Impact Rating is Major then Risk is Low	1	rule8	
9	If Feasibility Rating is Medium and Impact Rating is Major then Risk is Medium			
10	If Feasibility Rating is Very Low and Impact Rating is Severe then Risk is Low	1	rule10	
11	If Feasibility Rating is Low and Impact Rating is Severe then Risk is Medium	1	rule11	
12	If Feasibility Rating is Medium and Impact Rating is Severe then Risk is High	1	rule12	
13	If Feasibility Rating is High and Impact Rating is Negligible then Risk is Very Low	1	rule13	
14	If Feasibility Rating is High and Impact Rating is Moderate then Risk is Medium	1	rule14	
15	If Feasibility Rating is High and Impact Rating is Major then Risk is High	1	rule15	
16	If Feasibility Rating is High and Impact Rating is Severe then Risk is Very High	1	rule16	

Complete System

- Introduction
- Fuzzy Logic Basics
- Risk Assessment Framework

• Application Example

• Conclusions

Application example

Headlamp System

Damage Scenario:

Front collision with a narrow stationary object (e.g. a tree) caused by unintended turning-off of headlamp during night driving at *low speed* (<30 km/h) and *icy road surface*.

Threat Scenario:

Tampering with a signal sent by body control ECU leads to loss of integrity of the data communication of the "Lamp Request" signal to the power switch actuator ECU, potentially causing the headlamp to turn off unintentionally.

Example Risk Calculation

Threat scenario	Damage Scenario	FIS Result	ISO/SAE 21434 Result
	1	5.00	5
	2	4.00	4
1	3	4.41	4
	4	4.41	4
	5	3.50	4
	1	3.94	4
	2	2.94	3
2	3	3.44	3
	4	3.44	3
	5	2.50	3

- Results are generally in line with the standard proposed method
- Output is on a continuous scale instead of a discrete one
- Allows to capture differences in risks that would have the same value according to the traidional method

Threat scenario	Damage Scenario	FIS Result	ISO/SAE 21434 Result
	1	5.00	5
	2	4.00	4
1	3	4.41	4
	4	4.41	4
	5	3.50	4
	1	3.94	4
	2	2.94	3
2	3	3.44	3
	4	3.44	3
	5	2.50	3

- Results are generally in line with the standard proposed method
- Output is on a continuous scale instead of a discrete one
- Allows to capture differences in risks that would have the same value according to the traidional method

Advantages

- The risk surface is smoother, which indicates a finer level of detail in terms of risk calculation
- The methodology preserves the linear ordering among the risks calculated with it

- Introduction
- Fuzzy Logic Basics
- Risk Assessment Framework
- Application Example

• Conclusions

Conclusions

The proposed **fuzzy-logic-based framework** aims to bring some advantages to the risk assessment procedure while remaining within the scope of the TARA process. Its key features are:

- Increased granularity in the risk output (continuous scale)
- Allows to differentiate between risks that would have the same value otherwise
- Capability of handling a certain **degree of uncertainty**
- Flexibility & minimal overhead thanks to tools support